
Exact Inference for Nested Discrete Probabilistic Programs
Francesco Pontiggia

francesco.pontiggia@tuwien.ac.at
TU Wien

Vienna, Austria

Ezio Bartocci
ezio.bartocci@tuwien.ac.at

TU Wien
Vienna, Austria

Michele Chiari
michele.chiari@tuwien.ac.at

TU Wien
Vienna, Austria

1 Introduction
Conditioning in probabilistic programming allows for represent-
ing various human reasoning patterns, such as expressing beliefs,
intentions, desires in uncertain circumstances, or adding evidence
of facts. Stuhlmüller and Goodman [13] have introduced nested
queries (i.e., nested probabilistic programs) as a tool to model the-
ory of mind, i.e. metareasoning patterns. An example are Schelling
coordination games: two agents wish to meet in a cafè in town but
cannot communicate. However, they know perfectly each other’s
preferences. Each agent samples both a location according to its
preference, and a location obtained simulating the behaviour of the
other agent, and finally conditions on the two being equal. More ap-
plications are in game theory, linguistics, multi-agent planning [10]
and sequential decision-making [5].

To express nested queries, probabilistic programming languages
(PPLs) must support conditioning via ordinary operators that are
part the language, and not merely applied to programs, such as
query() and observe(). Modern PPLs comprise them because they
have the expressive power of universal computation, hence they
allow for (potentially infinite) recursion, a straightforward way
to formalize and implement conditioning and nesting of models.
Examples are WebPPL [6], Church , and Anglican.

Nested inference for such infinite-state models is a very chal-
lenging task. Existing solutions are dynamic programming [12] and
Nested Monte Carlo estimation [9]. In this work, we propose to
perform exact inference on nested probabilistic programs through
an operational semantics based on probabilistic Pushdown Au-
tomata (pPDA). pPDA can be seen as an extension of ordinary finite-
state Markov Chains with an unbounded stack. They model pro-
grams with discrete probability distributions and all variables hav-
ing finite domain, but with unrestricted function calls, unbounded
recursion and unbounded iteration. As we will show, with some
tailoring of the pPDA model, the stack can also track the recursive
nesting of queries, thus enabling exact nested inference.

Related Works. Dice [7] and PERPL [3] are two related PPLs de-
vised for exact inference. Dice supports discrete bounded variables
and a limited form of function calls and iteration. PERPL extends
Dice with unbounded recursion, while [14] extends Dice with un-
bounded iteration. None of these PPLs supports nested queries.

2 Probabilistic Pushdown Automata
We present probabilistic Operator Precedence Automata (pOPA), a
class of pPDA devised to model nested queries by giving a rejection
sampling semantics to hard conditioning. We describe first all the
components informally, and then assemble them in Def 2.2. We
refer to [8, Sec. 4] for the presentation of a reference programming
language, cprGCL, and an operational semantics in terms of pOPA.
In cprGCL, if condition b is not satisfied, a observe(b) statement

call ret qry obs stm
call ⋖ � ⋖ ⋗ ⋖
ret ⋗ ⋗ ⋗ ⋗ ⋗
qry ⋖ � ⋖ ⋖ ⋖
obs ⋗ ⋗ ⋗ ⋗ ⋗
stm ⋗ ⋗ ⋗ ⋗ ⋗

Figure 1: Operator Precedence Matrix 𝑀call. For example,
precedence between call and ret is �.

is interpreted as rejecting immediately the current execution, and
re-instantiating a new trial of the current probabilistic program
(query). If b is satisfied, observe(b) is skipped. Note that, since we
limit ourselves to the discrete setting, we are allowed to consider
only hard conditioning.

Let 𝑄 be the set of automaton states. In a pOPA, each 𝑢 ∈ 𝑄 is
labeled with a symbol corresponding to a statement in the orig-
inal program. These symbols play a crucial role in the manage-
ment of the stack (as we will describe soon). Therefore, we fo-
cus on an alphabet called Σcall with only five symbols: Σcall =

{call, ret, qry, obs, stm}. Symbols call and ret represent resp. pro-
cedure calls and returns, and can be decorated with the name of
the procedure to be invoked. qry marks the beginning of a proba-
bilistic program in their nesting, while obs is a triggered rejection
(i.e., a non satisfied observation). Label stm denotes all other state-
ments (e.g., assignments, sampling from a primitive distribution,
while-loop instructions . . .).

This class of automata takes its name from the fact that their
alphabets are equipped with three Precedence Relations between
symbols. Let Σ be an alphabet. For 𝑎, 𝑏 ∈ Σ, if 𝑎 ⋖ 𝑏 we say 𝑎 yields
precedence to 𝑏, if 𝑎 � 𝑏 we say 𝑎 is equal in precedence to 𝑏, and
if 𝑎 ⋗ 𝑏 then 𝑎 takes precedence from 𝑏. Precendence relations are
expressed concisely in a matrix.

Definition 2.1. An Operator Precedence Matrix (OPM) 𝑀 is a
total function 𝑀 : Σ2 → {⋖, �,⋗} If 𝑀 is an OPM on a finite
alphabet Σ, (Σ, 𝑀) is an OP alphabet.

pOPA have a fixed set of stack symbols Γ⊥ = Γ ∪ {⊥}: ⊥ is the
initial stack symbol, and Γ = Σ × 𝑄 (i.e., stack symbols are pairs
of alphabet labels and pOPA states). We indicate with 𝑡𝑜𝑝 (𝐴) the
topmost symbol of stack 𝐴 and 𝑠𝑚𝑏 ([𝑎, 𝑟]) = 𝑎. 𝑠𝑚𝑏 (⊥) = #, a
special symbol that yields precedence to all the others.

A pOPA can perform three types of moves: adding a symbol on
top of stack (push), updating the current topmost stack symbol
(shift), or removing the topmost stack symbol (pop). Three tran-
sition functions reflect them: 𝛿push : 𝑄 → Distr (𝑄), 𝛿shift : 𝑄 →
Distr (𝑄), and 𝛿pop : (𝑄 ×𝑄) → Distr (𝑄). The precedence relation
between the label on top of the stack and the label Λ(𝑢) of current
state 𝑢 determines the next move.

https://orcid.org/0000-0003-2569-6238
https://orcid.org/0000-0002-8004-6601
https://orcid.org/0000-0001-7742-9233

Francesco Pontiggia, Ezio Bartocci, and Michele Chiari

Table 1: Results on two nested inference queries. For POPAlyzer, we report also the number of equations solved. ✗ indicates failure of the
inference process due to a Javascript heap out-of-memory error (with memory limit 16 GB). For Schelling, we found significant differences
between multiple executions of rejection sampling. Namely, out of 11 executions, WebPPL run out of memory in seven cases; in the remaining
four, it returned 2-outcome distributions (0.59, 0.41), (0.62, 0.38), (0.61, 0.39), (0.52, 0.48) . The exact values computed by our tool are (0.610, 0.390) .

Experiment POPAlyzer WebPPL

equations time memory enumerate rejection

Schelling 1236 < 1 sec 80 MB ✗ either a few secs or ✗

DMP 3453 < 1 sec 80 MB ✗ ✗

For any stack 𝐴 ∈ Γ∗{⊥} and state 𝑢 ∈ 𝑄 :

push : (𝑢,𝐴) 𝑥→ (𝑣, [Λ(𝑢), 𝑢]𝐴)
if 𝑠𝑚𝑏 (𝑡𝑜𝑝 (𝐴)) ⋖ Λ(𝑢) and 𝛿push (𝑢) (𝑣) = 𝑥 ;

shift : (𝑢, [𝑎, 𝑠]𝐴) 𝑥→ (𝑣, [Λ(𝑢), 𝑠]𝐴)
if 𝑎 � Λ(𝑢) and 𝛿shift (𝑢) (𝑣) = 𝑥 ;

pop : (𝑢, [𝑎, 𝑠]𝐴) 𝑥→ (𝑣, 𝐴)
if 𝑎 ⋗ Λ(𝑢) and 𝛿pop (𝑢, 𝑠) (𝑣) = 𝑥 .

where 𝑥→ denotes a transition with probability 𝑥 .
In pop moves, the state recorded on top of the stack is used as

an information to determine where the pOPA transitions to.

Definition 2.2. A pOPA is a tuple A = (Σ, 𝑀,𝑄,𝑢0, 𝛿,Λ) where:
(Σ, 𝑀) is an OP alphabet; 𝑄 is a finite set of states (disjoint from
Σ); 𝑢0 is the initial state; Λ : 𝑄 → Σ is a state labelling function;
and 𝛿 is a triple of transition functions 𝛿push : 𝑄 → Distr (𝑄),
𝛿shift : 𝑄 → Distr (𝑄), and 𝛿pop : (𝑄 ×𝑄) → Distr (𝑄).

Figure 1 gives a precedencematrix for the alphabet Σcall such that
a pOPA on Σcall mimics the behaviour of a procedural probabilistic
programming language. E.g., call ⋖ call indicates to push on top of
the stack when calling a function inside a function. The precedence
relations for obs trigger pop moves that unwind the stack until,
and no further a symbol with qry is reached, in line with rejection
sampling.

3 System of Equations
The denotation of the original program, its posterior probability
distribution, corresponds in the pOPA to the least non-negative
fixed point of the system of polynomial equations v = 𝑓 (v), where
v is the vector of triples ⟦𝑢, 𝛼 | 𝑣⟧ for all 𝑢, 𝑣 ∈ 𝑄 , 𝛼 ∈ Γ and

𝑓 (⟦𝑢, 𝛼 | 𝑣⟧) =

𝑓push (⟦𝑢, 𝛼 | 𝑣⟧) if 𝛼 = ⊥, or 𝛼 = [𝑎, 𝑠] and 𝑎 ⋖ Λ(𝑢)
𝑓shift (⟦𝑢, 𝛼 | 𝑣⟧) if 𝛼 = [𝑎, 𝑠] and 𝑎 � Λ(𝑢)
𝑓pop (⟦𝑢, 𝛼 | 𝑣⟧) if 𝛼 = [𝑎, 𝑠] and 𝑎 ⋗ Λ(𝑢)

𝑓push (⟦𝑢, 𝛼 | 𝑣⟧) =
∑︁
𝑟,𝑡 ∈𝑄

𝛿push (𝑢) (𝑟)⟦𝑟, [Λ(𝑢), 𝑢] | 𝑡⟧⟦𝑡, 𝛼 | 𝑣⟧

𝑓shift (⟦𝑢, 𝛼 | 𝑣⟧) =
∑︁
𝑟 ∈𝑄

𝛿shift (𝑢) (𝑟)⟦𝑟, [Λ(𝑢), 𝑠] | 𝑣⟧

𝑓pop (⟦𝑢, 𝛼 | 𝑣⟧) = 𝛿pop (𝑢, 𝑠) (𝑣)
Such equation systems have been extensively studied in the

context of pPDA model checking [1, 4, 16] under the form of termi-
nation probabilities. Informally, ⟦𝑢, 𝛼 | 𝑣⟧ is the probability that a

pOPA in state 𝑢 with 𝛼 on top of its stack eventually pops 𝛼 and
reaches state 𝑣 . When𝑢 is the initial state and 𝛼 is the called main()
query, if 𝑣 encodes the return value it is easy to see how these
equations represent the posterior distribution.

3.1 Computing solutions
In general, solutions of v = 𝑓 (v) are (possibly irrational) algebraic
numbers [4], so they cannot always be computed exactly in an
explicit form. However, the system can be encoded in the Existen-
tial Theory of the Real [4], which is decidable in PSPACE [2]. We
note that our expressive setting does not come at any additional
complexity cost with respect to Dice and PERPL, whose system of
equations are PSPACE-hard [7]. The relation with the theory of the
Reals is only of theoretical interest though, as SMT solvers offer
only doubly exponential algorithms for it, with poor performances.

On the other hand, various numerical methods [4, 16] can ap-
proximate solutions to any desired level of accuracy [11]. In this
work, we propose to exploit recent results on finding certificates
for pPDA, and in particular Optimistic Value Iteration [15]. This
methods computes firstly a vector of lower bounds to the solution
via standard value iteration, and then guesses numerically a vector
of upper bounds to the least fixpoint. A key property is that these
upper bounds are inductive (or self-certifying): there exist an easy
algorithm to prove that they are correct. Since the fixpoint lies
between the two bounds, this approach ensures soundness of our
inference algorithm despite the solutions being irrational. Moreover,
these bounds can be made as tight as desired.

4 Preliminary Experiments
We have implemented the method sketched above in a tool called
POPAlyzer. We report on some preliminary experiments in Table 1.
We consider two case studies: the Schelling coordination game of
the Introduction, and a generic multi-agent sequential decision
making problem called DMP. For Schelling, recursion depends on
a biased coin flip, thus being unbounded. As a baseline, we con-
sider WebPPL, a Javascript-based PPL supporting nested queries.
We have further optimized our tool by decomposing the system
of equations into strongly connected components. For WebPPL,
we have increased heap size available to Javascript’s runtime to
16GB. We report the default inference method (enumeration), and
rejection sampling with default options: 100 samples per query, and
incremental mode enabled. While we expect enumeration to fail on
Schelling, due to unbounded recursion, the DMP model presents
a chain of recursive calls that eventually terminates: an explicit
enumeration of all possible paths is in principle feasible.

Nested Probabilistic Programming

References
[1] Tomás Brázdil, Javier Esparza, Stefan Kiefer, and Antonín Kucera. 2013. Ana-

lyzing probabilistic pushdown automata. Formal Methods Syst. Des. 43, 2 (2013),
124–163. https://doi.org/10.1007/s10703-012-0166-0

[2] John F. Canny. 1988. Some Algebraic and Geometric Computations in PSPACE.
In STOC’88. ACM, 460–467. https://doi.org/10.1145/62212.62257

[3] David Chiang, Colin McDonald, and Chung-chieh Shan. 2023. Exact Recursive
Probabilistic Programming. Proc. ACM Program. Lang. 7, OOPSLA1 (2023), 665–
695. https://doi.org/10.1145/3586050

[4] Kousha Etessami and Mihalis Yannakakis. 2009. Recursive Markov chains, sto-
chastic grammars, and monotone systems of nonlinear equations. J. ACM 56, 1
(2009), 1:1–1:66. https://doi.org/10.1145/1462153.1462154

[5] Owain Evans, Andreas Stuhlmüller, John Salvatier, and Daniel Filan. 2017. Mod-
eling Agents with Probabilistic Programs. http://agentmodels.org

[6] Noah D Goodman and Andreas Stuhlmüller. 2014. The Design and Implementa-
tion of Probabilistic Programming Languages. http://dippl.org.

[7] Steven Holtzen, Guy Van den Broeck, and Todd D. Millstein. 2020. Scaling
exact inference for discrete probabilistic programs. Proc. ACM Program. Lang. 4,
OOPSLA (2020), 140:1–140:31. https://doi.org/10.1145/3428208

[8] Francesco Pontiggia, Ezio Bartocci, and Michele Chiari. 2024. Model Checking
Recursive Probabilistic Programs with Conditioning (v2). CoRR (2024). https:
//arxiv.org/abs/2404.03515v2

[9] Tom Rainforth. 2018. Nesting Probabilistic Programs. In UAI 2018, Amir Glober-
son and Ricardo Silva (Eds.). AUAI Press, 249–258. http://auai.org/uai2018/

proceedings/papers/92.pdf
[10] Iris Rubi Seaman, Jan-Willem van de Meent, and David Wingate. 2018. Modeling

Theory of Mind for Autonomous Agents with Probabilistic Programs. CoRR
abs/1812.01569 (2018). http://arxiv.org/abs/1812.01569

[11] Alistair Stewart, Kousha Etessami, and Mihalis Yannakakis. 2015. Upper Bounds
for Newton’s Method on Monotone Polynomial Systems, and P-Time Model
Checking of Probabilistic One-Counter Automata. J. ACM 62, 4 (2015), 30:1–30:33.
https://doi.org/10.1145/2789208

[12] Andreas Stuhlmüller and Noah D. Goodman. 2012. A Dynamic Programming
Algorithm for Inference in Recursive Probabilistic Programs. In StaRAI-12. https:
//starai.cs.kuleuven.be/2012/accepted/stuhlmuller.pdf

[13] Andreas Stuhlmüller and Noah D. Goodman. 2014. Reasoning about reasoning
by nested conditioning: Modeling theory of mind with probabilistic programs.
Cognitive Systems Research 28 (2014), 80–99. https://doi.org/10.1016/J.COGSYS.
2013.07.003

[14] Mateo Torres-Ruiz, Robin Piedeleu, Alexandra Silva, and Fabio Zanasi. 2024.
On Iteration in Discrete Probabilistic Programming. In FSCD (LIPIcs, Vol. 299),
Jakob Rehof (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 20:1–20:21.
https://doi.org/10.4230/LIPICS.FSCD.2024.20

[15] Tobias Winkler and Joost-Pieter Katoen. 2023. Certificates for Probabilistic Push-
down Automata via Optimistic Value Iteration. In TACAS’23 (LNCS, Vol. 13994).
Springer, 391–409. https://doi.org/10.1007/978-3-031-30820-8_24

[16] Dominik Wojtczak and Kousha Etessami. 2007. PReMo: An Analyzer for Prob-
abilistic Recursive Models. In TACAS’07 (LNCS, Vol. 4424). Springer, 66–71.
https://doi.org/10.1007/978-3-540-71209-1_7

https://doi.org/10.1007/s10703-012-0166-0
https://doi.org/10.1145/62212.62257
https://doi.org/10.1145/3586050
https://doi.org/10.1145/1462153.1462154
http://agentmodels.org
http://dippl.org
https://doi.org/10.1145/3428208
https://arxiv.org/abs/2404.03515v2
https://arxiv.org/abs/2404.03515v2
http://auai.org/uai2018/proceedings/papers/92.pdf
http://auai.org/uai2018/proceedings/papers/92.pdf
http://arxiv.org/abs/1812.01569
https://doi.org/10.1145/2789208
https://starai.cs.kuleuven.be/2012/accepted/stuhlmuller.pdf
https://starai.cs.kuleuven.be/2012/accepted/stuhlmuller.pdf
https://doi.org/10.1016/J.COGSYS.2013.07.003
https://doi.org/10.1016/J.COGSYS.2013.07.003
https://doi.org/10.4230/LIPICS.FSCD.2024.20
https://doi.org/10.1007/978-3-031-30820-8_24
https://doi.org/10.1007/978-3-540-71209-1_7

	1 Introduction
	2 Probabilistic Pushdown Automata
	3 System of Equations
	3.1 Computing solutions

	4 Preliminary Experiments
	References

